Inorg. Chem. **2003**, *42*, 5932−5937

Investigation of the Spin Exchange Interactions and Magnetic Structures of the CrVO4-Type Transition Metal Phosphates, Sulfates, and Vanadates by Spin Dimer Analysis

H.-J. Koo and M.-H. Whangbo*

*Department of Chemistry, North Carolina State Uni*V*ersity, Raleigh, North Carolina 27695-8204*

K.-S. Lee

Department of Chemistry, The Catholic University of Korea, Puchon, Kyunggi-Do, South Korea 422-743

Received March 31, 2003

The CrVO₄-type magnetic oxides MM'O₄ consist of edge-sharing MO₄ octahedral chains condensed with M'O₄ tetrahedra and exhibit a wide variety of magnetic structures. The magnetic properties of these oxides were examined by studying their spin exchange interactions on the basis of spin dimer analysis. The nature and magnitudes of the intra- and interchain spin exchange interactions depend on the square-to-rectangle distortion in the basal planes of the MO4 chain and on the difference between the M 3d and O 2p orbital energies. The spiral magnetic structures of β -CrPO₄ and MnSO₄ originate from the pseudohexagonal arrangement of the MO₄ chains and the frustrated interchain antiferromagnetic interactions.

Introduction

The crystal structures and magnetic properties of the $CYO₄$ -type solids have been studied over the past 50 years.¹ These oxides include phosphates T_1PO_4 , $2^{-6}VPO_4$, $2^{-4,6}$ β -Cr- PO_4 ,^{2,7,8} and FePO₄-II,⁹ sulfates MnSO₄,^{10–12} FeSO₄,¹² CoSO₄,¹² and $NiSO₄,¹²$ and vanadates $CrVO₄^{12,13}$ and $FeVO₄-II.¹⁴$ The

- (1) For a recent review, see: Baran, E. J. *J. Mater. Sci*. **1998**, *33*, 2479.
- (2) Yamauchi, T.; Ueda, Y. *J. Magn. Magn. Mater.* **¹⁹⁹⁸**, *¹⁷⁷*-*181*, 705.
- (3) Glaum, R.; Reehuis, M.; Stu¨sser, N.; Kaiser, U.; Reinauer, F. *J. Solid State Chem.* **1996**, *126*, 15.
- (4) Glaum, R.; Gruehn, R. *Z. Kristallogr.* **1992**, *198*, 41.
- (5) Leclaire, A.; Benmoussa, A.; Borel, M. M.; Grandin, A.; Raveau, B. *Eur. J. Solid State Inorg. Chem.* **1991**, *28*, 1323.
- (6) Kinomura, N.; Muto, F.; Koizumi, M. *J. Solid State Chem*. **1982**, *45*, 252.
- (7) Wright, J. P.; Attfield, J. P.; David, W. I. F.; Forsyth, J. B. *Phys. Re*V*. B* **2000**, *62*, 992.
- (8) Attfield, J. P.; Battle, P. D.; Cheetham, A. K. *J. Solid State Chem*. **1985**, *57*, 357.
- (9) Battle, P. D.; Gibb, T. C.; Hu, G.; Munro, D. C.; Attfield, J. P. *J. Solid State Chem*. **1986**, *65*, 343.
- (10) Lecomte, M.; de Gunzbourg, J.; Teyrol, M.; Miedan-Gros, A.; Allain, Y. *Solid State Commun*. **1972**, *10*, 235.
- (11) Will, G.; Frazer, B. C.; Shirane, G.; Cox, D. E.; Brown, P. J. *Phys. Re*V*. B* **¹⁹⁶⁵**, *¹⁴⁰*, A2139.
- (12) Frazer, B. C.; Brown, P. J. *Phys. Re*V*. B* **¹⁹⁶²**, *¹²⁵*, 1283.
-

structural building blocks of these magnetic oxides MM′O4 are MO_6 octahedra (M = Ti, V, Cr, Mn, Fe, Ni) and M'O₄ tetrahedra ($M' = P$, S, V). The MO_6 octahedra share their trans edges to form MO_4 chains (Figure 1a), in which there are two types of oxygen atoms (i.e., O_{eq} and O_{ax}). Each $M'O_4$ tetrahedron is condensed with three adjacent $MO₄$ chains such that one $O-O$ edge is represented by two adjacent O_{ax} atoms of one MO_4 chain and the opposite $O-O$ edge by the O_{eq} atoms of the remaining two MO₄ chains (one O_{eq} from each chain) (Figure 1b). As a consequence, the $MO₄$ chains have a pseudohexagonal arrangement (Figure 1c).

The $CrVO₄$ -type oxides exhibit a wide spectrum of magnetic properties despite their structural similarity, as summarized in Table 1. The magnetic susceptibility vs temperature $(\chi$ -vs-*T*) curves of VPO₄, β -CrPO₄, CrVO₄, and FeVO₄-II exhibit a broad maximum (χ_{max}) expected for a one-dimensional (1D) Heisenberg antiferromagnetic (AFM) chain.¹⁵ The intrachain magnetic order is AFM in VPO₄,

(15) Kahn, O. *Molecular Magnetism*; VCH Publishers: Weinheim, Germany, 1993.

^{*} To whom correspondence should be addressed. E-mail: mike_whangbo@ ncsu.edu

⁽¹³⁾ Isasi, M. J.; Sa´ez,-Puche, R.; Veiga, M. L.; Pico, C.; Jerez, A. *Mater. Res. Bull*. **1988**, *23*, 595.

⁽¹⁴⁾ Oka, Y.; Yao, T.; Yamamoto, N.; Ueda, Y.; Kawasaki, S.; Azuma, M.; Takano, M. *J. Solid State Chem*. **1996**, *123*, 54.

Figure 1. Crystal structure of the CrVO₄-type oxides MM'O₄: (a) perspective view of an MO4 chain that is made up of trans edge-sharing \overline{MO}_6 octahedra; (b) polyhedral view of how the \overline{MO}_4 chains are condensed with the M'O₄ tetrahedra; (c) projection view of the MO₄ chains and M'O₄ tetrahedra along the chain direction.

 (c)

 β -CrPO₄, FePO₄-II, MnSO₄, and CrVO₄, while it is ferromagnetic (FM) in $FeSO_4$, $CoSO_4$, and $NiSO_4$. The interchain

Table 1. Magnetic Properties of the CrVO₄ Type Solids

	intrachain order	interchain order	general description
TiPO ₄			temp-independent χ above 140 K^a
			broad $χ_{max}$ above room temp? b
			no long-range order down to $2 Kc$
VPO ₄	\mathbf{AFM}^c	AFM ^c	broad χ_{max} around 140 K ^{a,c}
	$J/k_B = -102$, -120 K ^b $J''/k_B = -0.2$ K ^b		
β -CrPO ₄ AFM ^d		spiral ^{d,e}	broad χ_{max} around 40 K ^{a,d}
	$J/k_B = -19, -24 \text{ K}^b$	$J''/k_B = -0.7 \text{ K}^b$	
	$FePO4-II$ canted AFM	AFM	$T_{N} = 4.2 \text{ K}^{f}$
$MnSO4$ AFM ^g		spiral ^g	$T_{\rm N} = 11.5 \text{ K}^{h}$
$FeSO4$ FMi		AFM ⁱ	$T_{\rm N} = 21~{\rm K}^i$
	$CoSO4$ canted FMi	AFM ⁱ	$T_{N} = 15.5 \text{ K}^{i}$
$NiSO4$ FMi		AFM ⁱ	$T_{N} = 37 K^{i}$
$CrVO4$ AFM ⁱ		FM ⁱ	broad χ_{max} around 75 K ^j
	$J/k_B = -25, -22 \text{ K}$		$T_{\rm N}$ $\approx 50~{\rm K}^i$
$FeVO4-II$			broad χ_{max} around 52 K ^k 3D ordering below 40 K^k

^a Reference 6. *^b* Reference 2. *^c* Reference 3. *^d* Reference 7. *^e* Reference 8. *^f* Reference 9. *^g* Reference 11. *^h* Reference 10. *ⁱ* Reference 12. *^j* Reference 13. *^k* Reference 14.

magnetic order is FM in CrVO₄, is spiral in β -CrPO₄ and $MnSO₄$, and is AFM in VPO₄, FePO₄-II, FeSO₄, CoSO₄, and NiSO4. So far, no explanation has been provided for why the CrVO4-type oxides exhibit such diverse magnetic properties. To understand the magnetic properties of these oxides, it is necessary to analyze their spin exchange interactions. In this work, we probe this question by performing spin dimer analysis¹⁶⁻²¹ on the basis of extended Hückel tight binding (EHTB) calculations.^{22,23} This approach has been quite successful in understanding the spin exchange interactions and magnetic structures of numerous magnetic solids.16-²¹

Structural Parameters Important for Spin Exchange Interactions

In the CrVO₄-type oxides $MM'O_4$ ($M =$ transition metal; $M' = P$, S, V), the intrachain spin exchange interactions are of the superexchange (SE) type that takes place through the ^M-O-M paths, and the interchain spin exchange interactions are of the super-superexchange (SSE) type that takes place through the $M-O$ ^{**} $O-M$ paths. Thus, a spin dimer (i.e., a structural unit of a solid consisting of two spin sites) representing an SE interaction is given by an edge-sharing octahedral dimer M_2O_{10} (Figure 2a) and that representing an SSE interaction by a dimer M_2O_{12} made up of two isolated MO6 octahedra (Figure 2b).

- (16) For a recent review, see: Whangbo, M.-H.; Koo, H.-J.; Dai, D. *J. Solid State Chem*., in press.
- (17) Whangbo, M.-H.; Koo, H.-J.; Dai, D.; Jung, D. *Inorg. Chem*. **2002**, *41*, 5575.
- (18) Koo, H.-J.; Whangbo, M.-H.; VerNooy, P. D.; Torardi, C. C.; Marshall, W. J. *Inorg. Chem*. **2002**, *41*, 4664.
- (19) Whangbo, M.-H.; Koo, H.-J. *Inorg. Chem*. **2002**, *41*, 3570.
- (20) Whangbo, M.-H.; Koo, H.-J.; Dumas, J.; Continentino, M. A. *Inorg. Chem*. **2002**, *41*, 2193.
- (21) Koo, H.-J.; Whangbo, M.-H.; Lee, K.-S. *J. Solid State Chem*. **2002**, *169*, 143.
- (22) Hoffmann, R. *J. Chem. Phys*. **1963**, *39*, 1397.
- (23) Our calculations were carried out by employing the SAMOA (Structure and Molecular Orbital Analyzer) program package (Dai, D.; Ren, J.; Liang, W.; Whangbo, M.-H., http://chvamw.chem.ncsu.edu/, 2002).

Table 2. Structural Parameters of the CrVO₄-Type Magnetic Solids MM'O₄

	$M-O_{eq}$, $M-O_{ax}(\AA)$	$O-O_{\perp}$, $O-O_{\parallel}(\AA)$	R^a	θ (deg)	O…O (Å) (along $a)^b$	$Q \cdots Q$ (Å) (along $a + b$) ^c
TiPO ₄ ^d	2.119.1.949	2.747, 3.227	0.851	159.1	2.552(x2)	2.501 (x2)
VPO ₄ ^d	2.080, 1.928	2.681, 3.181	0.843	162.1	2.550(x2)	2.497×2
β -CrPO ₄ ^e	2.028, 1.926	2.625, 3.093	0.849	163.0	2.546(x2)	2.503(x2)
MnSO ₄	2.249, 2.108	2.840, 3.486	0.815	158.2	2.420(x2)	2.379(x2)
NiSO ₄ ^g	2.054, 1.967	2.578, 3.199	0.806	164.2	2.578(x2)	2.593(x2)
CrVO ₄ ^g	2.055, 1.946	2.817, 2.993	0.941	173.7	2.751(x2)	2.874 (x2)
$FeVO4-IIh$	2.029, 2.006	2.649, 3.074	0.862	167.7	2.980(x2)	2.809(x2)

a R refers to the ratio O-O_⊥/O-O_{|1}. *b* Between O_{eq} and O_{eq}. *c* Between O_{eq} and O_{ax}. *d* Reference 4. *e* Reference 8 *f* Reference 11. *g* Reference 12. *h* Reference 14.

Figure 2. Projection polyhedral views of the spin dimers M_2O_{10} and M_2O_{12} that represent the SE and SSE interactions, respectively.

The structural parameters of $MM'O₄$ important for their SE and SSE interactions are listed in Table 2. These parameters were taken from the available crystal structures reported in the literature. It is noted that the $M-O_{eq}$ bond is longer than the $M-O_{ax}$ bond in each MO_4 chain. Each $M(O_{eq})_4$ unit of a MO_6 octahedron is rectangular in shape such that the $O-O$ edge perpendicular to the chain (i.e., $O-O_{\perp}$) is shorter than that parallel to the chain (i.e., $O-O_{\parallel}$). The extent of the square-to-rectangle distortion in each $M(O_{eq})_4$ unit is measured by how small the ratio $R = O-O_1/$ O-O_{||} is. The sulfates MnSO₄ and NiSO₄ have very small R values (Table 2). In a spin dimer M_2O_{10} representing an SE interaction (Figure 2a), the two $M(O_{eq})_4$ rectangles make a dihedral angle *θ* ranging from ∼160 to ∼170°. In a spin dimer M_2O_{12} representing an SSE interaction (Figure 2b), the two MO_6 octahedra have shorter $O \cdots O$ contacts along the $(a + b)$ -direction than along the *a*-direction in all oxides except for NiSO₄ and CrVO₄ (Table 2). The O \cdots O contacts of the vanadates $CrVO₄$ and $FeVO₄-II$ are considerably longer compared with those of the other oxides. The $M(O_{eq})_4$ rectangles of a spin dimer M_2O_{12} are coplanar along the *a*-direction but not along the $(a + b)$ -direction.

Spin Dimer Analysis

Physical properties of a magnetic solid are described in terms of a spin-Hamiltonian expressed as a sum of pairwise spin exchange interactions. In terms of first-principles electronic structure calculations the strengths of spin exchange interactions (i.e., spin exchange parameters *J*) are estimated on the basis of electronic structure calculations for spin dimers^{16,24-26} or electronic band structure calculations for magnetic solids.27,28 For magnetic solids with large and

- (26) Dai, D.; Whangbo, M.-H. *J. Chem. Phys*. **2001**, *114*, 2887.
- (27) Derenzo, S. E.; Klitenberg, M. K.; Weber, M. J. *J. Chem. Phys*. **2000**, *112*, 2074 and references therein.
- (28) Korotin, M. A.; Anisimov, V. I.; Saha-Dasgupta, T.; Dasgupta, I. *J. Phys.: Condens. Matter* **2000**, *12*, 113.

complex unit cell structures these quantitative methods become difficult to apply. In understanding the anisotropy of spin exchange interactions of magnetic solids, however, it is often sufficient to examine their relative magnitudes.¹⁶⁻²¹ In general, a spin exchange parameter *J* is written as $J = J_F$ + J_{AF} ^{15,29} The FM term J_F (>0) is small so that the spin exchange becomes FM (i.e. $I > 0$) if the AFM term J_{AF} exchange becomes FM (i.e., $J \geq 0$) if the AFM term J_{AF} $(₀)$ is negligibly small in magnitude, but becomes AFM (i.e., $J \leq 0$) if the J_{AF} term is large in magnitude. Consequently, qualitative trends in spin exchange interactions can be discussed by studying those in their J_{AF} terms.

When each spin site of a spin dimer has *m* unpaired spins, the overall spin exchange parameter *J* of the spin dimer is described by 30

$$
J = \frac{1}{m^2} \sum_{\mu=1}^{m} \sum_{\nu=1}^{m} J_{\mu\nu}
$$
 (1)

From the viewpoint of nonorthogonal magnetic orbitals localized at the spin sites, the AFM contribution J_{AF} from each off-diagonal term $J_{\mu\nu}$ ($\mu \neq \nu$) is negligible because the overlap integral between two adjacent magnetic orbitals of different symmetry is either zero or negligible. Consequently, for an AFM spin exchange interactions *J*, only the diagonal $J_{\mu\mu}$ terms can contribute significantly. Thus, eq 1 can be approximated by

$$
J \approx \frac{1}{m^2} \sum_{\mu=1}^{m} J_{\mu\mu} \tag{2}
$$

so that the associated AFM term J_{AF} can be written a s^{16,17,20,21,31}

$$
J_{\rm AF} \approx -\frac{\langle (\Delta e)^2 \rangle}{U_{\rm eff}}\tag{3}
$$

where U_{eff} is the effective on-site repulsion and $\langle (\Delta e)^2 \rangle$ is the average of the spin-orbital interaction energy squares (see below). 32

- (30) Charlot, M. F.; Kahn, O. *Nou*V*. J. Chim*. **¹⁹⁸⁰**, *⁴*, 567.
- (31) Dai, D.; Koo, H.-J.; Whangbo, M.-H. In *Solid State Chemistry of Inorganic Materials III*; MRS Symposium Proceedings Vol. 658; Geselbracht, M. J., Greedan, J. E., Johnson, D. C., Subramanian, M. A., Eds.; Materials Research Society: Warrendale, PA, 2001; GG5.3.1- 5.3.11 and references therein.
- (32) This expression is valid when spin exchange parameters of a spin Hamiltonian are written as *J* instead of 2*J*.

⁽²⁴⁾ Illas, F.; Moreira, I. de P. R.; de Graaf, C.; Barone, V. *Theor. Chem. Acc.* **2000**, *104*, 265 and references therein.

⁽²⁵⁾ Noodleman, L. *J. Chem. Phys.* **1981**, *74*, 5737.

⁽²⁹⁾ Hay, P. J.; Thibeault, J. C.; Hoffmann, R. *J. Am. Chem. Soc*. **1975**, *97*, 4884.

Figure 3. Spin-orbital interaction energy [∆]*^e* of a spin dimer with two equivalent spin sites.

In the case of the CrVO₄-type oxides $MM'O₄$, the unpaired spins reside in the d-block levels of the MO_6 octahedra. If a spin site has the $(t_{2g})^3 (e_g)^2$ configuration, the $\langle (\Delta e)^2 \rangle$ value is given by

$$
\langle (\Delta e)^2 \rangle = \frac{1}{m^2} \sum_{\mu=1}^{m} (\Delta e_{\mu\mu})^2
$$
 (4)

where [∆]*eµµ* is the spin-orbital interaction energy associated with the magnetic orbitals ϕ_u of the two spin sites ($\mu = 1-3$ for the t_{2g} levels and $\mu = 4-5$ for the e_g levels) (Figure 3). In general, the total number of unpaired spins *m* at a spin site can be divided into the m_t and m_e unpaired spins in the t_{2g} - and e_g-block levels, respectively (i.e., $m = m_t + m_e$). $(m_t = 1 \text{ and } m_e = 0 \text{ for TiPO}_4$; $m_t = 2 \text{ and } m_e = 0 \text{ for VPO}_4$; $m_t = 3$ and $m_e = 0$ for β -CrPO₄ and CrVO₄; $m_t = 3$ and m_e $=$ 2 for MnSO₄ and FeVO₄-II; m_t $=$ 0 and m_e $=$ 2 for NiSO₄.) If we define the following energy terms

$$
(\Delta e_{t2g})^2 = (\Delta e_{11})^2 + (\Delta e_{22})^2 + (\Delta e_{33})^2
$$

$$
(\Delta e_{eg})^2 = (\Delta e_{44})^2 + (\Delta e_{55})^2
$$
(6)

then the $\langle (\Delta e)^2 \rangle$ value can be approximated by^{16,20}

$$
\langle (\Delta e)^2 \rangle \approx \frac{1}{m^2} \left[\frac{m_t}{3} \frac{m_t}{3} (\Delta e_{t2g})^2 + \frac{m_e}{2} \frac{m_e}{2} (\Delta e_{eg})^2 \right] \tag{7}
$$

It is important to note that the $\langle (\Delta e)^2 \rangle$ value becomes smaller when a spin site has a large number of unpaired spins (i.e., large *m*).

In describing the spin exchange interactions of magnetic solids in terms of ∆*e* values obtained from EHTB calculations, it is necessary^{16-21,31} to employ double- ζ Slater type orbitals³³ for both the 3d orbitals of the transition metal and the s/p orbitals of the surrounding ligand atoms. The atomic orbital parameters of M and O employed for our calculations are summarized in Table 3.

Results and Discussion

The $\langle (\Delta e)^2 \rangle$ values of MM'O₄ calculated for the intrachain spin exchange path (J_{intra}) and for the interchain spin exchange paths along the a - and $(a + b)$ -directions $(J_a$ and *^J*^a+b, respectively) are listed in Table 4. In each compound

Table 3. Exponents ζ_i and Valence Shell Ionization Potentials H_{ii} of Slater-Type Orbitals χ_i Used for Extended Hückel Tight-Binding Calculations*^a*

atom	χ_i	H_{ii} (eV)	ζ_i	C^b	ζ_i	$C^{\prime b}$
Ti	4s	-8.97	1.619	1.00		
Ti	4p	-5.44	1.200	1.00		
Ti	3d	-10.81	4.67	0.3646	1.986	0.7556
V	4s	-8.81	1.697	1.00		
V	4p	-5.52	1.260	1.00		
V	3d	-11.00	5.052	0.3738	2.173	0.7456
$_{\rm Cr}$	4s	-8.66	1.772	1.00		
$_{\rm Cr}$	4p	-5.24	1.300	1.00		
Сr	3d	-11.22	5.410	0.3830	2.340	0.7367
Mn	4s	-9.75	1.844	1.00		
Mn	4p	-5.89	1.350	1.00		
Mn	3d	-11.67	5.767	0.3898	2.510	0.7297
Fe	4s	-9.10	1.925	1.00		
Fe	4p	-5.32	1.390	1.00		
Fe	3d	-12.60	6.068	0.4038	2.618	0.7198
Ni	4s	-9.17	2.077	1.00		
Ni	4p	-5.15	1.470	1.00		
Ni	3d	-13.49	6.706	0.4212	2.874	0.7066
О	2s	-32.3	2.688	0.7076	1.675	0.3745
Ω	2p	-14.8	3.694	0.3322	1.659	0.7448

a H_{ii} ^{*s*} are the diagonal matrix elements $\langle \chi_i | H^{\text{eff}} | \chi_i \rangle$, where H^{eff} is the effective Hamiltonian. In our calculations of the off-diagonal matrix elements $H^{\text{eff}} = \langle \chi_i | H^{\text{eff}} | \chi_i \rangle$, the weighted formula was used. See: Ammeter, J.; Bürgi, H.-B.; Thibeault, J.; Hoffmann, R. *J. Am. Chem. Soc*. **1978**, *100*, 3686. *^b* Contraction coefficients used in the double-*ú* Slater-type orbital.

Table 4. $\langle (\Delta e)^2 \rangle$ Values Calculated for the Intra- and Interchain Spin Exchange Paths of the CrVO4-Type Magnetic Solids*^a*

	$J_{\rm intra}$	$J_{\rm a}$	J_{a+h}
TiPO ₄	3080(1.00)	290(0.09)	170(0.05)
VPO ₄	1000(1.00)	10(0.01)	170(0.17)
β -CrPO ₄	800(1.00)	180(0.23)	200(0.25)
MnSO ₄	240(1.00)	60(0.24)	40(0.16)
NiSO ₄	0(0.00)	3710(1.00)	240(0.07)
CrVO ₄	2330(1.00)	70(0.03)	110(0.05)
$FeVO4-II$	1340(1.00)	50(0.04)	50(0.04)

 $a \langle (\Delta e)^2 \rangle$ values are in units of (meV)².

the relative values of $\langle (\Delta e)^2 \rangle$ are given with respect to the largest one. In all $MM'O_4$ except for $NiSO_4$, the strongest AFM interaction is found for the intrachain spin exchange, in good agreement with the available experimental results (Table 1). This explains why many of these oxides exhibit a broad maximum in their χ -vs-*T* curves as if they are 1D Heisenberg AFM chain systems. For NiSO₄, the strongest AFM interaction is found for the interchain spin exchange interaction J_a while the intrachain AFM interaction is absent. The latter agrees with the fact that the intrachain spin exchange is FM in $NiSO₄$. Note that the intrachain AFM interaction is quite strong in $TiPO₄$. This is consistent with the observation that the magnetic susceptibility of $TiPO₄$ is nearly independent of temperature above 140 K.

Spiral magnetic structures can arise when spin exchange interactions are frustrated and are dominant over the single ion anisotropy.⁷ In β -CrPO₄, the interchain AFM interactions J_a and J_{a+b} are not negligible compared with the intrachain AFM interaction. Thus, given the triangular arrangement of the MO4 chains (Figure 1c), the interchain AFM interactions will be frustrated.^{7,15} Since the interchain AFM interactions J_a and J_{a+b} are quite similar in magnitude, the interchain AFM interactions will have the cycloidal spiral structure with (33) Clementi, E.; Roetti, C. At. Data Nuclear Data Tables 1974, 14, 177. the propagation vector of approximately $3a_0$ (Figure 4),⁷

Figure 4. Cycloidal spiral magnetic structure observed for β -CrPO₄, where each heavy dot represents an antiferromagnetically ordered CrO₄ chain.

Table 5. Variation of the $\langle (\Delta e)^2 \rangle$ Values Calculated for the Intra- and Interchain Spin Exchange Paths of NiSO4 as a Function of the Ratio *R* $=$ $O-O_{\perp}/O-O_{\parallel}^a$

$O-O1(\AA)$	$O-OII(\AA)$	R	J_{intra}	$J_{\rm a}$
2.578	3.199	0.806	0	3710
2.688	3.088	0.870	360	3480
2.788	2.988	0.933	1540	3530
2.888	2.888	1.000	3400	3670

 $a \langle (\Delta e)^2 \rangle$ values are in units of (meV)².

where a_0 is the a -parameter of the chemical cell. This accounts for the experimental observation of the cycloidal spiral structure with the propagation vector of $3.07a_0$.⁸ MnSO₄ has a spiral magnetic structure in which the propagation vector is approximately $6a_0$.¹¹ This observation is understandable because the interchain AFM interactions J_a and J_{a+b} are not negligible compared with the intrachain AFM interaction J_{intra} and because one interchain AFM interaction is stronger than the other interchain AFM interaction (i.e., $J_a/J_{a+b} \approx 3/2$).

The intrachain spin exchange is FM in the sulfate NiSO₄ (Table 1). As noted from Table 2, the square-to-rectangle distortion of the $M(O_{eq})_4$ unit is strongest in the sulfate NiSO4. To examine how this distortion affects the relative strengths of the intrachain interaction J_{intra} and the interchain interaction J_a , we construct several hypothetical structures of the Ni(O_{eq})₄ unit by gradually changing the O-O_⊥ and $O-O_{\parallel}$ lengths toward a square structure under the condition that the sum of the $O-O_{\perp}$ and $O-O_{\parallel}$ lengths remains constant. Then we calculate the $\langle (\Delta e)^2 \rangle$ values for the exchange paths J_{intra} and J_a while keeping the O \cdots O distances along the *a*-direction at 2.578 Å as found for the real structure. Results of these calculations, summarized in Table 5, reveal that the intrachain AFM interaction *J*intra is nearly as strong as the interchain AFM interaction *J*^a when the Ni- $(O_{eq})_4$ unit is square and that the interchain AFM interaction *J*^a is hardly affected by the square-to-rectangle distortion whereas the intrachain AFM interaction J_{intra} is strongly diminished as the square-to-rectangle distortion proceeds. Therefore, in NiSO4, the square-to-rectangle distortion is critical for why the intrachain AFM interaction is absent so that the intrachain spin exchange becomes FM. The extent of the square-to-rectangle distortion in $MnSO₄$ is only slightly greater than that in NiSO₄ (i.e., $R = 0.815$ vs 0.806). This

Figure 5. (a) e_g-block magnetic orbital based on the 3d x^2-y^2 orbital. (b) SSE interaction between two such magnetic orbitals.

explains why the intrachain AFM interaction is not strong in MnSO4. One should recall that the strength of the intrachain AFM interaction is also governed by an electronic factor, namely, it becomes reduced as the energy difference between the M 3d and O 2p levels is decreased (equivalently, as the M 3d orbital becomes more contracted). Thus, it is understandable that the intrachain spin exchange is FM in $FeSO₄$ and $CoSO₄$ (Table 1). This electronic factor also accounts for why the intrachain AFM interactions of the phosphates MPO_4 (M = Ti, V, Cr), which have electrons only in the t_{2g} -block levels, decrease their strengths in the order TiPO₄ > VPO₄ > β -CrPO₄ (Table 4).

Finally, we discuss the reason why the interchain spin exchange is AFM in the sulfate $NiSO₄$ and its implications. Figure 5a depicts one of the e_g-block orbitals of the NiO₆ octahedron, in which the Ni 3d x^2-y^2 orbital is combined
out-of-phase with the O.2p orbitals. As illustrated in Figure out-of-phase with the O 2p orbitals. As illustrated in Figure 5b, the strength of the interchain AFM interaction J_a resulting from such a magnetic orbital increases with increasing the overlap between the 2p orbitals in the short O'''O contacts.16,18 The magnitude of this overlap increases with increasing the weight of the O 2p orbital in the magnetic orbital. In general, the M 3d level lies higher than the O 2p level for early transition metal atoms and becomes closer to the O 2p level for late transition metal atoms. With decrease of the energy difference between the M 3d and O 2p levels, the weight of the O 2p orbitals in the magnetic orbitals of an MO₆ octahedron (i.e., either the t_{2g}- or e_g-block orbitals) should increase. 34 Thus, the weight of the O 2p orbitals is large for $NiO₆$ and should decrease gradually on going from $NiO₆$ to $CoO₆$ to $FeO₆$ and $MnO₆$. This explains why the interchain spin exchange J_a is strongly AFM in NiSO₄ but becomes weakly AFM in MnSO₄.

Concluding Remarks

The magnetic structures of the CrVO₄-type oxides $MM'O₄$ are well accounted for in terms of the relative J_{AF} values calculated for the intra- and interchain spin exchange paths using spin dimer analysis. In all $MM'O₄$ except for $NiSO₄$, the strongest AFM interaction is found for the intrachain spin exchange. The occurrence of the spiral magnetic structures in β -CrPO₄ and MnSO₄ is explained by the facts that the MO4 chains have a pseudohexagonal arrangement and that the interchain AFM interactions J_a and J_{a+b} are similar in

⁽³⁴⁾ Albright, T. A.; Burdett, J. K.; Whangbo, M.-H. *Orbital Interactions in Chemistry*; Wiley: New York, 1985.

strength and are not negligible compared with the intrachain AFM interaction J_{intra} . The square-to-rectangle distortion of the $M(O_{eq})_4$ unit is strong in the sulfate NiSO₄ and as a result diminishes the intrachain AFM interaction so that the intrachain spin exchange of $NiSO₄$ is FM. The weight of the O 2p orbitals in the magnetic orbitals is large for $NiO₆$, so that the interchain spin exchange J_a is strongly AFM in NiSO4. The weight of the O 2p orbitals in the magnetic orbitals becomes smaller on going from $NiO₆$ to $MnO₆$, so

that the interchain spin exchange *J*^a becomes weakly AFM in MnSO4.

Acknowledgment. The work at North Carolina State University was supported by the Office of Basic Energy Sciences, Division of Materials Sciences, U.S. Department of Energy, under Grant DE-FG02-86ER45259. K.-S.L. thanks The Catholic University of Korea for Grant 2003. IC030115E